An end-to-end system to identify temporal relation in discharge summaries: 2012 i2b2 challenge
نویسندگان
چکیده
OBJECTIVE To create an end-to-end system to identify temporal relation in discharge summaries for the 2012 i2b2 challenge. The challenge includes event extraction, timex extraction, and temporal relation identification. DESIGN An end-to-end temporal relation system was developed. It includes three subsystems: an event extraction system (conditional random fields (CRF) name entity extraction and their corresponding attribute classifiers), a temporal extraction system (CRF name entity extraction, their corresponding attribute classifiers, and context-free grammar based normalization system), and a temporal relation system (10 multi-support vector machine (SVM) classifiers and a Markov logic networks inference system) using labeled sequential pattern mining, syntactic structures based on parse trees, and results from a coordination classifier. Micro-averaged precision (P), recall (R), averaged P&R (P&R), and F measure (F) were used to evaluate results. RESULTS For event extraction, the system achieved 0.9415 (P), 0.8930 (R), 0.9166 (P&R), and 0.9166 (F). The accuracies of their type, polarity, and modality were 0.8574, 0.8585, and 0.8560, respectively. For timex extraction, the system achieved 0.8818, 0.9489, 0.9141, and 0.9141, respectively. The accuracies of their type, value, and modifier were 0.8929, 0.7170, and 0.8907, respectively. For temporal relation, the system achieved 0.6589, 0.7129, 0.6767, and 0.6849, respectively. For end-to-end temporal relation, it achieved 0.5904, 0.5944, 0.5921, and 0.5924, respectively. With the F measure used for evaluation, we were ranked first out of 14 competing teams (event extraction), first out of 14 teams (timex extraction), third out of 12 teams (temporal relation), and second out of seven teams (end-to-end temporal relation). CONCLUSIONS The system achieved encouraging results, demonstrating the feasibility of the tasks defined by the i2b2 organizers. The experiment result demonstrates that both global and local information is useful in the 2012 challenge.
منابع مشابه
A hybrid system for temporal information extraction from clinical text
OBJECTIVE To develop a comprehensive temporal information extraction system that can identify events, temporal expressions, and their temporal relations in clinical text. This project was part of the 2012 i2b2 clinical natural language processing (NLP) challenge on temporal information extraction. MATERIALS AND METHODS The 2012 i2b2 NLP challenge organizers manually annotated 310 clinic notes...
متن کاملEvaluating temporal relations in clinical text: 2012 i2b2 Challenge
BACKGROUND The Sixth Informatics for Integrating Biology and the Bedside (i2b2) Natural Language Processing Challenge for Clinical Records focused on the temporal relations in clinical narratives. The organizers provided the research community with a corpus of discharge summaries annotated with temporal information, to be used for the development and evaluation of temporal reasoning systems. 18...
متن کاملRecognizing Medication related Entities in Hospital Discharge Summaries using Support Vector Machine
Due to the lack of annotated data sets, there are few studies on machine learning based approaches to extract named entities (NEs) in clinical text. The 2009 i2b2 NLP challenge is a task to extract six types of medication related NEs, including medication names, dosage, mode, frequency, duration, and reason from hospital discharge summaries. Several machine learning based systems have been deve...
متن کاملComprehensive temporal information detection from clinical text: medical events, time, and TLINK identification
BACKGROUND Temporal information detection systems have been developed by the Mayo Clinic for the 2012 i2b2 Natural Language Processing Challenge. OBJECTIVE To construct automated systems for EVENT/TIMEX3 extraction and temporal link (TLINK) identification from clinical text. MATERIALS AND METHODS The i2b2 organizers provided 190 annotated discharge summaries as the training set and 120 disc...
متن کاملÀ la Recherche du Temps Perdu: extracting temporal relations from medical text in the 2012 i2b2 NLP challenge
OBJECTIVE An analysis of the timing of events is critical for a deeper understanding of the course of events within a patient record. The 2012 i2b2 NLP challenge focused on the extraction of temporal relationships between concepts within textual hospital discharge summaries. MATERIALS AND METHODS The team from the National Research Council Canada (NRC) submitted three system runs to the secon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Medical Informatics Association : JAMIA
دوره 20 5 شماره
صفحات -
تاریخ انتشار 2013